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Catalytic addition of P-H bonds to unsaturated substrates
mediated by platinum group metal complexes offers a regio-
controlled way to prepare biologically active substances and
useful ligands for homogeneous catalysigzurther rational

development of these reactions requires mechanistic understand-

ing, which so far is limited; Scheme 1 shows possible mecha-
nisms for an olefin substrate as an example. After oxidative
addition of the P-H bond? it is not known whether catalytic
P—C bond formation occurs by reductive eliminatigpath A)
after insertion of the unsaturated substrate into theHvbond

or by insertion into the M-P bond (path B), followed by G-H
reductive elimination. We report evidence for the latter pathway
in Pt-catalyzed hydrophosphination of acrylonitrile and direct
observation of both proposed® bond-forming steps in model
systems.

The complex Pt(dppe)(GI€HCN) (1) catalyzes hydrophos-
phination of acrylonitrile with PEMes*, which yields PHMes*-
(CH.CH.CN) (2) (dppe= Ph,PCHCH,PPh, Mes* = 2,4,6-
(t-Bu)3CeHz, Scheme 2). The reaction proceeds slowly (10 mol
% 1, THF, 55°C, one turnover per 24 h), and no intermediates
are observed b$2P NMR during catalysis. However, oxidative
addition of P-H bonds to the catalyst precursor Pt(dppe)(s
stilbene) B8) generates the phosphido hydride complexes Pt-
(dppe)(PRRyH [R1 = Rx = Mes @); Ry = H, R, = Mes* (5),
Mes = 2,4,6-MgCgH;]. Treatment of these hydrides with 2
equiv of acrylonitrile affords the phosphines P@klL,CH,-

CN (6) and 2, respectively, and Pt complelx

The putative intermediates in this transformation, Pt(dppe)-
(PR]_RZ)CHZCHZCN [R]_ = R, = Mes (7), R1 = H, R, = Mes*

(8)] were prepared by deprotonation of the cationic phosphine
complex precursord2 and 135 while the analogous methyl
compounds M(dppe)(PRz)Me [R; = R, = Mes, M= Pt (9);
R1=H, R, = Mes*, M = Pt (10), Pd (L1)] could be synthesized

(1) (a) Pringle, P. G.; Smith, M. Bl. Chem. Soc., Chem. Comm@89Q
1701-1702. (b) Hoye, P. A. T.; Pringle, P. G.; Smith, M. B.; Worboys, K.
J. Chem. Soc., Dalton Tran%993 74, 269-74. (c) Pringle, P. G.; Brewin,
D.; Smith, M. B.; Worboys, K. IrAgueous Organometallic Chemistry and
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A., Ed.; Kluwer: Dordrecht, 1992; pp 3%1.

(2) For examples, see: (a) Ebsworth, E. A. V.; Gould, R. O.; Mayo, R.
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(5) Prepared (Scheme 3) from the precursor Pt(dppe)yCEHCN)Br,
which was synthesized frofd and BrCHCH,CN.
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Scheme 2 Platinum Phosphido Hydrides and Alkyls in
Catalytic Acrylonitrile Hydrophosphination
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aPt= Pt(dppe), R= R, = Mes @, 7,12); R, = H, R, = Mes* (5,

8, 13). Reagents: (i) CLCHCN, PHMes*, catalytic in Pt; (i) PHRR,,
—stilbene; (iii) 2CHCHCN, —PRIR,CH,CH;CN (2, 6); (iv) CH,CHCN;
(v) LiN(SiMe3), or NaN(SiMe)..

Scheme 3 Synthesis and PC Bond-Forming Reactions of
Platinum and Palladium Phosphido Alkyl Complexes
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aM = Pt(dppe), except M= Pd(dppe) forll, 15, and18 X =
halide. R = R, = Mes: R= Me (9, 16), R= CH,CH.CN (7, 12). R,
=H, R, = Mes*: R= Me (10, 11, 14, 15, 17, 18), R = CH,CH.CN
(8, 13). Reagents: (i) PHER,;, —MeOH; (ii) AgBF4, PHRIRy; (iii)
LiN(SiMes), or NaN(SiMe); (iv) dppe; (v) CHCHCN.

by this method froml4 and 15 or by direct proton transfer to
a Pt-OMe group (Scheme 3).The Pt phosphido alkylg—10
are readily isolated and stable to reductive elimination in
solution, even on heating; as expected from these observations,
complexes and8 are inactive in catalytic hydrophosphination.
In contrast, Pd complekx1 must be generated at78 °C, since
it decomposes at room temperature to yield PH(Me)Melsr.
the absence of trapping reagents, the Pd products are Pd{dppe)
and Pd(0); adding dppe avoids this disproportionation and gives
only Pd(dppe) (Scheme 3¥.

These results suggest that catalysis operates by insertion of
acrylonitrile into the PtP bond of phosphido hydrid®,
followed by C-H reductive elimination from an unobserved

(6) The thermodynamics of the reactions with Pt(dppe)Me(OMe) (see:
Bryndza, H. E.; Domaille, P. J.; Tam, W.; Fong, L. K.; Paciello, R. A,;
Bercaw, J. EPolyhedronl988 7, 1441-52) are under investigation (Wicht,

D. K.; Paisner, S. N.; Glueck, D. S.; Li, C.; Nolan, S. P. Unpublished
results).

(7) See: Brauer, D. J.; Bitterer, F.; Dorrenbach, F.; Hessler, G.; Stelzer,
0.; Kruger, C.; Lutz, FZ. Naturforsch. BL996 51, 1183-1196 and ref 5b
therein.

(8) Such apparent reductive eliminations from Pd(ll) phosphido alkyl
complexes, which have been previously proposed to occur in Pd-catalyzed
P—C coupling reactions (see for example: Tunney, S. E.; Stille, J.K.
Org. Chem1987, 52, 748-753), appear to be general. Details and related
mechanistic studies will be reported separately.
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alkyl hydride intermediate (path B above). In support of this However, the observed-*C bond formation from a palladium
hypothesis, the phosphido alky®s-11 undergo regiospecific ~ phosphido alkyl suggests that path A may also be important in
insertion of acrylonitrile into the MP bonds to give M(dppe)-  Pd-catalyzed additions of-fH bonds to unsaturated substrates.
[CH(CN)CH,PRR;]JMe [R1 = R, = Mes, M= Pt (16); Ry = The effects of metal, ancillary ligands, and substrates on these
H, R, = Mes*, M = Pt (17), Pd (L8)] (Scheme 3). Platinum  and related catalyses are currently under investigation.
complexesl6 and17 were isolated as stable pale yellow solids,

while Pd Comple)d8 d_ecomp_oses on a'gtempted Work_up. Eor Fund, administered by the American Chemical Society, the Exxon

10and11, which contain a chiral phosphido group, the insertion - gqycation Foundation, and DuPont for partial support. We also thank

is diastereoselectivel7 and 18 exist as~2:1 mixtures of Dartmouth College for support, including an E. E. Just fellowship for

diastereomers. This is probably a thermodynamic ratio, since 3.M.N., the NSF for a REU fellowship for B.M.L., and Johnson-

insertion is reversible. Isolated, acrylonitrile-fré@and17 de- Matthey/Alfa/Aesar for loans of Pd and Pt salts.

insert acrylonitrile slowly in THF solution to reach an equilib-

rium with 9 and10, while 18, generated in solution, decomposes da

to PH(Me)Mes*, via phosphido complex.? S for ordering and Internet access instructions.
In conclusion, our results suggest that, in this system, Pt-

catalyzed acrylonitrile hydrophosphination proceeds by selective JA970355R

insertion into the M-P bond in preference to the-vH bond?° (10) Related pathways are possible in metal-catalyzed hydroamination
and hydroxylation of unsaturated substrates. (a) Cowan, R. L.; Trogler, W.

(9) These equilibria lie to the right, favoring insertion. Decomposition C.J. Am. Chem. S0d.989 111, 4750-4761. (b) Bennett, M. A.; Jin, H;
during the long reaction times required to reach equilibrium prevented Li, S.; Rendina, L. M.; Willis, A. CJ. Am. Chem. S0d.995 117, 8335~
precise measurement Bgq, 8340.
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